Synthesis of *cis*-12-Nonadecen-9-one, *cis*-13-Icosen-10-one, the Pheromone of Peach Fruit Moth, and *cis*-15-Henicosen-11-one, the Pheromone of Douglas Fir Tussock Moth

NOTES

Shota Ito,* Norio Saito, Kiyotaka Hatakeda, Tomio Goto, Yutaka Ikushima, and Takashi Asano Government Industrial Research Institute, Tohoku, 4-2-1 Nigatake, Sendai 983 (Received January 5, 1984)

Synopsis. A convenient synthesis of *cis*-12-non-adecen-9-one (**4a**), *cis*-13-icosen-10-one (**4b**), the pheromone of peach fruit moth, and *cis*-15-henicosen-11-one (**4c**), the pheromone of Douglas fir tussock moth, is described. **4a** was synthesized from methyl 3-oxoundecanoate and 1-bromo-2-nonyne (**2a**) *via* 12-nonadecyn-9-one. The higher homolog **4b** could be obtained from methyl-3-oxododecanoate and **2a**. Similarly, **4c** was prepared from methyl 3-oxotridecanoate and 1-bromo-3-nonyne (**2b**).

cis-12-Nonadecen-9-one (4a) and cis-13-icosen-10-one (4b) have been recognized as the principles of sex pheromone of Japanese peach fruit moth (Carposina niponensis Walsingham), a major economic pest of peach, apple and other fruits in Japan.¹⁾ It is pointed out that a mixture of 4a and 4b in a ratio 1:20 shows the strongest biological activity.^{1,2)} On the other hand, cis-15-henicosen-11-one (4c) is known as the sex pheromone of Douglas fir tussock moth (Orgyia pseudotsugata McDunnough), a severe defoliator of Douglas fir and other fir forests in western North America.³⁾ These three compounds are unusual in that most lepidopterous sex pheromones are characterized as unsaturated fatty alcohols, acetates or aldehydes of C₁₂, C₁₄, or C₁₆ chain length.⁴⁾

Since above mentioned pheromones are potent male attractants, and might be of practical interests, a variety of synthetic methods of **4a**, **4b**,^{1,5)} and **4c**⁶⁾ have been reported. However no example for the preparation of these unsaturated ketones by the same technique has been explored.

Recently general and practical methods for the synthesis of arbitrary β -keto esters, versatile intermediates in organic synthesis, have been developed. Thus we wish to report here a convenient synthesis of **4a**, **4b**, and

$$\begin{array}{c} O \\ CH_{3}(CH_{2})_{x}CCH_{2}CO_{2}CH_{3} + CH_{3}(CH_{2})_{y}C\equiv C(CH_{2})_{z}Br \xrightarrow{I} \\ O \\ CH_{3}(CH_{2})_{x}C(CH_{2})_{z+1}C\equiv C(CH_{2})_{y}CH_{3} \xrightarrow{III} \\ & 3 \\ O \\ CH_{3}(CH_{2})_{x}C(CH_{2})_{z+1}C\equiv C(CH_{2})_{y}CH_{3} \xrightarrow{III} \\ CH_{3}(CH_{2})_{x}C(CH_{2})_{z+1}C\equiv C(CH_{2})_{y}CH_{3} \\ & 4 \\ 1 \text{ a: } x=7, \text{ b: } x=8, \text{ c: } x=9; \text{ 2 a: } y=5, \text{ } z=1, \text{ b: } y=4, \\ z=2; \text{ 3,4 a: } x=7, y=5, z=1, \text{ b: } x=8, y=5, z=1, \text{ c: } x=9, y=4, z=2 \end{array}$$

x=9, y=4, z=2 I: NaH in Toluene; II: wet DMSO; III: H₂/Pd-BaSO₄ Scheme 1. **4c** starting from β -keto esters (1) which could be obtained easily according to Yonemitsu *et al.*^{7a)}

The high stereoselectivity and chemical yield anticipated for the reduction of acetylenic bond to corresponding *cis*-olefin suggested 12-nonadecyn-9-one (3a), 13-icosyn-10-one (3b) and 15-henicosyn-11-one (3c) as the primary synthetic goal.⁸⁾ Thus the synthesis of title compounds 4a, 4b, and 4c was carried out according to Scheme 1.

Methyl 3-oxoundecanoate (la) was alkylated with 1-brom-2-nonyne (2a) in toluene in the presence of sodium hydride. The porduct, without isolation, was then heated in wet dimethyl sulfoxide (DMSO)9) to be demethoxycarbonylated to 12-nonadecyn-9-one (3a) in a good yield (80%). 3b was also prepared in the same manner from methyl 3-oxododecanoate (1b). 3c could be obtained by the same procedure from methyl 3oxotridecanoate (1c) and 1-bromo-3-nonyne (2b) in a low yield (\approx 40%). However, the yield of 3c was improved upon (78%) by carrying out the alkylation in the presence of N,N-dimethylformamide (DMF). These acetylenic ketones were partially hydrogenated over palladium/barium sulfate catalyst to give desired compounds in 89-91% yields. The resulting products, 4a, 4b, and 4c showed no infrared absorption band in the neighborhood of 970 cm⁻¹ due to disubstituted transalkene. The structure of these products were identified by comparing IR and NMR spectra with those of reported data.5,6)

Experimental

The IR and NMR spectra were recorded on Hitachi 285 and JEOL/FX-100 spectrometer respectively.

12-Nonadecyn-9-one (3a), 13-Icosyn-10-one (3b), and 15-Henicosyn-11-one (3c). To a stirred suspension of sodium hydride (50% mineral oil dispersion 1.49 g, 31 mmol) in dry toluene (150 ml) a solution of methyl 3-oxoundecanoate (la) (6.42 g, 30 mmol) in dry toluene (20 ml) was added dropwise over a period of 20 min at room temperature. Stirring was continued for 1 h. Then 1-bromo-2-nonyne $(2a)^{10}$ (6.7 g, 32 mmol) and powdered sodium iodide (2 g) were added. The mixture was refluxed for 11 h and then poured onto cold hydrochloric acid. The toluene layer was separated and the solvent was distilled off in vacuo. The residue was dissolved in a mixture of DMSO (50 ml) and water (5 ml) then the solution was heated (150 °C, bath temp) for 3.5 h. The mixture was poured onto ice water and extracted with ether (100 ml×2). The ether solution was washed with brine and dried over anhydrous magnesium sulfate, concentrated in vacuo to give crude 3a as a pale yellow liquid. This crude 3a was chromatographed over silicagel with hexane-benzene (6:4) as eluent to give 6.66 g (80%) of 3a. IR (neat): 2940, 2860, 1720, 1460, 1090 cm⁻¹. NMR (CDCl₃): δ 0.87 (6H, distored t, J=6 Hz), 1.081.66 (20H, br s), 1.97—2.23 (4H, m), 2.25—2.63 (4H, m). 13-Icosyn-10-one (3b) was obtained from methyl 3-oxododecanoate (1b) and 2a by the same procedure in 78% yield. IR (neat): 2960, 2860, 1720, 1460, 1090 cm⁻¹. NMR (CDCl₃): δ 0.90 (6H, distored t, J=6 Hz), 1.05—1.73 (22H, br s), 1.96—2.22 (4H, m), 2.27—2.63 (4H, m). 15-Henicosyn-11-one (3c) could be prepared from methyl 3-oxotridecanoate (1c) and 1-bromo-3-nonyne (2b)¹¹⁾ in 78% yield by using a mixture of toluene and DMF (10—15% of toluene)¹²⁾ as the solvent of the alkylation. IR (neat): 2920, 2840, 1715, 1460, 1090 cm⁻¹. NMR (CDCl₃): δ 0.93 (6H, distored t, J=6 Hz), 1.10—1.80 (24H, br s), 1.98—2.23 (4H, m), 2.26—2.60 (4H, m).

cis-12-Nonadecen-9-one (4a), cis-13-Icosen-10-one (4b), and cis-15-Henicosen-11-one (4c). A methanol solution (35 ml) of 3a (1.60 g, 5.8 mmol) containing two drops of quinoline was hydrogenated over 5% Pd-BaSO₄ (120 mg) under atmospheric pressure for 3 h. The solid was filtered off and the filtrate was concentrated in vacuo. The residue was dissolved in ether and washed with 5% hydrochloric acid, brine, dried over magnesium sulfate. Concentration of ether gave crude 4a which was chromatographed over silica gel with hexanebenzene (6:4) as eluent to obtain 1.48 g (91%) of 4a. IR (neat): 2960, 1710, 1460, 1370 cm⁻¹. NMR (CDCl₃): δ 0.88 (6H, distored t, J=6 Hz), 1.10-1.70 (20H, br s), 1.90-2.12 (2H, m), 2.20-2.42 (6H, m), 5.17-5.40 (2H, m). cis-13-Icosen-10-one (4b) was obtained by the same manner from 3b in 89% yield. IR (neat): 2930, 1710, 1470, 1370 cm⁻¹. NMR (CDCl₃): δ 0.90 (6H, distored t, J=6 Hz), 1.10-1.70 (22H, br s), 1.90-2.10 (4H, m), 2.20-2.40 (6H, m), 5.15-5.40 (2H, m). cis-Henicosen-11-one (4c) was prepared from 3c by the same procedure in 91% yield. IR (neat): 3000, 1715, 1460, 1370 cm⁻¹. NMR (CDCl₃): δ 0.98 (6H, distored t, J=6 Hz), 1.05— 1.75 (24H, br s), 1.90—2.15 (4H, m), 2.35 (4H, t, J=7 Hz), 5.26-5.32 (2H, m).

References

- 1) Y. Tamaki, K. Honma, and K. Kawasaki, Appl. Entmol. Zool. 12, 60 (1977).
- 2) S. Shirasaki, M. Yamada, R. Saito, K. Yanaginuma, M. Kumakura, and Y. Tamaki, *Nippon Oyo Dobutsu Konchu Gakkai Shi*, 23, 240 (1979).
- 3) R. G. Smith, G. E. Daterman, and G. D. Davis, Jr., Science, 188, 63 (1975).
- 4) J. M. Brand, J. C. Young, and R. M. Silverstein, Fortsch. Chem. Org. Natur., 37, 1 (1979).
- 5) T. Yoshida and S. Saito, Bull. Chem. Soc. Jpn., 55, 3047 (1982) and references cited therein.
- 6) M. Fetizon and C. Lazare, J. Chem. Soc., Perkin Trans. 1, 1978, 842; O. P. Vig, M. L. Sharma, N. K. Verma, and N. Malik, Indian J. Chem., 19B, 950 (1980); Y. Murata, K. Inomata, H. Kinoshita, and H. Kotake, Bull. Chem. Soc. Jpn., 56, 2539 (1983) and references cited therein.
- 7) a) Y. Oikawa, K. Suzuki, and O. Yonemitsu, J. Org. Chem., 43, 2088 (1978); b) W. Wierenga and H. I. Skulnik, ibid., 44, 310 (1979); c) R. P. Houghton and D. J. Lapham, Synthesis, 1982, 451.
- 8) Another reason for choosing 3 as key intermediate for 4 is the fact that *trans*-olefin can also be obtained easily by reduction of acetylene with Na/NH₃. It is known that the trans isomer of 4c is also biologically active (see Ref. 3).
- 9) A. P. Krapcho, J. F. Weinmaster, J. M. Eldridge, E. G. E. Jahngen, Jr., A. J. Lovey, and W. P. Stephens, J. Org. Chem., 43, 138 (1978).
- 10) W. W. Christie and R. T. Holman, *Chem. Phys. Lipids*, 1, 407 (1967).
- 11) R. W. Bradshaw, A. C. Day, E. R. H. Jones, C. B. Page, V. Thaller, and R. A. Hodge, J. Chem. Soc., C, 1971, 1156
- 12) When a large quantity of DMF was used the yield of 3c was lower (≈66%).